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Compressibility sum rule for the two-dimensional electron gas
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The authors establish formulas for the isothermal compressibility and long-wavelength static density-density
response function of a weakly correlated two-dimensional electron gas in<tged<c and 0<Bep<1
degeneracy domainge = mn42/(mkgT). The calculation of the pressure in the former domain is based on
the Isihara-Toyoda formulgA. Isihara and T. Toyoda, Phys. Rev. B, 3358 (1980] for the exchange-
correlation energy at finite temperature. The pressure calculation in the latter domain is based on the Totsuiji
classical cluster-expansion formula for the correlation engrgyTotsuiji, J. Phys. Soc. Jpd0, 857 (1976);

Phys. Rev. A19, 889(1979].
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Satisfaction of the compressibility sum rule is recognizedFor noninteracting charges, evaluation of the compressibility
as an important test of the reliability of model static andresults in the familiar 2D static Lindhard function at long
dynamical theories of Coulomb systems in a strongly correwavelengths:
lated (liquid) phase. The system of interest in this Brief Re-
port is the two-dimensional electron g€2DEG), an ideal- n e
ized model in which electronic motions in a uniform positive Xo(d—0,0=0)=—n’K7=— ;(1_‘3 e @
background are restricted to a two-dimensional plane of zero
thickness; the electrons interact via the Qoulomb poten-  For interacting charges, the calculation if begins by
tial, r being the in-plane separation distance. Examples o§pecifying the total average energy per particle,
two-dimensional laboratory systems that the 2DEG emulates
are (i) electrons trapped on the free surface of liquid helium  (E)(n,T)=(E\i.)o(n,T) +{E)(N,T)+{(E)(n,T). (3)
[1,2,3], (ii) electron arrays on a thin helium film coating a
dielectric substrat¢3], and (iii) 2D electron states at the expressed in terms of the average kinetic energy per particle
interface between GaAs and ,&a, _,As. [2] of a noninteracting system,

Compressibility sum rules for the static screened density
response functionys{q)=xs{d,0=0) have been formu- 1
lated for the correlated 2DEG in the zero-temperature quan- (Ewin)o(n, T)= o J'O de T+ exg Ble—pg)]’
tum and classical domairjg]. They have yet to be formu- F 0
lated, however, for arbitrary values of the 2D degeneracy.
parameterBe = mn#%/(mksT) owing to the lack of infor- and (E,)(n,T) and (E¢)(n,T), the Hartree-FockHF) ex-

. : . change and correlation energies per particle.
mation about the internal energy. 2DEG internal energy cal- - . L P

. 4 . Addressing first thg E,;,)o kinetic ener ntribution
culations at low temperatures in the neighborhoodr efO ddressing first the(E,qn) kinetic energy contribution,

are nevertheless available in the weak coupling redile the right-hand side of Ed4) can be cast in a more tractable
making it possible to formulate the compressibility rule for form by observing thafE,in)o satisfies the initial value prob-

1< Bep<wx. This is one goal of this Brief Report. The other

* &

4

is to formulate the 2D-compressibility rule for the weakly 1 h2 1
degenerate domains9Bs:<1 in the neighborhood of the —+ —[(Exin)o(n,T)= , (58
classical limit also in the weak coupling regime. on n m 1—exp(—Ber)
The compressibility sum rule states that at long .
wavelengths the exact screened density response function _ -
is determined by the isothermal compressibilitgr <Ek'”>°(n_>0’T)_),8kBT’ (5b)

=[n(aP/on){] L
where the chemical potential, has been eliminated in favor
of the 2D Fermi energy = mn#2/m via the 2DEG relation
Xsd{q—0)=—n%Ky, (1)  for noninteracting particleg5(a)]
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+In[1+exp — =Beg. 6 e?
Brotinl1texp=puo)]=per © (Eo)(n,T)=[—0.3496+ 0.865 .~ 0.173 o Inr] o —
0

The uniqueness of the solution to H§), 4
a

+ —2[ —0.1824-0.0297 InBeg
(Ber

(Ekin)o(n,T)= (7)

1 fSFd X
erJo U 1—exp(—px)’

1 2
+ 54 (InBeg) (12

guarantees that Eq$7) and (4) are one and the same. It
should be emphasized that this latter more tractable kineti
energy formula holds only in two dimensions. In the domain
1<Bep<w, a denominator expansion of E(f) in a geo-
metric series givep7]:

?or the domain X Bep<x; rg=alap<l (ay is the Bohr
radiug. The first right-hand-side member (£2) is the cor-
relation energy at zero temperature; the second right-hand-
side member is the finite-temperature correction. In the
L " WeaI2<Iy degenerate quantum domairs Beg<<1, while the

_ eF O(%°) quantum correctiolA(E,) to the classical correlation
<Eki”>0(n’T)=;L dxngo exp(—ppAX) energy was calculated sémg time ago for the 3D one-
component plasm@dCP),[10] it has yet to be determined for

e 1 o (er the 2D OCP. If this correction is sufficiently small, then the
=5+ ;pzl fo dx xexp( —ppBx) classicalRef. [11] 2D cluster-expansion formula,
eF 1 & 1 & 2
Sl =1 ——|. y
For 22~ 2|1 3087 (E)(n.T)= Z5[In(27)+0.1544-+0[(yin ),
(8
(y=2mnp%e*<1) (13

The expressiof8) is in agreement with Eq8.3) of Ref.[5],
derived by application of the Sommerfeld expangtdb) ] to
the free-electron grand-partition function. In the weakly de-shoyld reasonably well represent the correlation energy in
generate domain€ Ber<1, the 2D expression the 0<Bep<1 domain. The error incurred by invoking the
classical formula13) can be roughly estimated by conjec-

. 1 1 turing that the Ref[lO] A<EC>|3D: _A3D(8F)3DF3D quan'
(Exin)o(n, T)= E 1+ ZﬂsF (9 tum correction to the 3D OCP correlation energy, expressed
in terms of the classical coupling parametdrsy
o : . =pBZ%e%/agp, has the same form(E.)|,p=—Asperl 2
results from expandingl —exp(—B3x)] in Eq.(7) in a Taylor “AspeeVy2 i two  dimensions; Agp=(1/2m)

series aboutBx=0 and retaining only the lowest-order _ I . o
O(Bs¢) degeneracy correction. X(167/81)*~ is a geometric constant; its 2D counterpart

We next consider the 2D-exchange contribution. In theAZD Is also expected to be of order unity at most. Then or-

domain 1< Be. <, the Isihara-Toyod#] formula for the dering the smallness parameters so fpat— 0 at the same
finite-temperature correction to the HF exchange engggy, rate as or faster tharyr—fo (to ensure the recovery of the
(E)(n,T=0)=—0.6(¥a), can be written in the form classical Debye correlation energy in the> 0 limit), we see
that the leading quantum correction @&(Beg/+/y) times
smaller than they-dependent contributions to E¢L3). Ob-

(Ex(n.T)=(E)(n,T=0) serve, however, that this correction @ways Q\/Ber)

o 1 o2 times smaller than the exchange ene(f)¥), independently
+ ———[0.0228- ——In(Ber) |—, of the ordering of the smallness parameters. Thus, the ratio-
(Ber) 12v2 a nale for leaving out of Eq13) the negligibly small quantum

(10) correction [and, consequently, the higher-ordew I y)?
classical termy while at the same time retaining the exchange

B . . . . correction in the compressibility calculation below. This
wherea=1/Jmn is the 2D interparticle distance. In the op- .ompletes the specification of the total energy per particle
posite domain 6 Beg<1, the 2D-exchange energy is rea- (E) of the interacting system.

sonably well approximated by the asymptotic fornj@la We now proceed to the calculation of the pressure from
the well-known thermodynamic formule2]

(E)(n,T)~0.632/Ber(E,)(n, T=0). (11)

d d
For the 2D-correlation energy, the Réb] calculation (—,BP) :nz(—<E>) (14)
provides J n an B
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n8|:

= B0t T exg = Ber)

(15

5 J
+n (&_n[<EX>+<EC>] 5

Here, it is instructive to isolate for the moment the contribu-
tion from the free-particle kinetic energy; integrating the first
two right-hand-side members of E(.5) over B gives

B
BPozn—nfo (Exinyo(n,B")dB’

. fﬁ dag’
e |, 1-exp—pB'ep)’
Differentiating Eqg.(16) and making use of the differential

equation(5a) for the noninteracting 2D Coulomb gas, one
readily obtains

consistent with the long-wavelength Lindhard expres$n
for arbitrary degeneracy.

(16)

Py
an

€F

1o fer)’ @n
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1 , ne?
—=nepg+3N{E,)(n,T=0)— —(0.865,—0.173F5Inry)
K+ 8ay

mn
+ W(_ 0.363+0.177InBeg)

2mné?
W[0.335+ 0.086 InBer—0.0265In Ber)?]
(1<Bep<»), (22)
n yn
e E(l‘f’%ﬁfjp)"‘ ﬁ(ln 2vy+0.654
+(0.632/Ber) 4n(E) (N, T=0) (0=<pep<1),
(23

then follow from Eqgs(18)—(21).
To facilitate comparison with mean field theories, we in-
troduce the local field correctio@(q) via

_ Xo(Q)
1+v(q)G(q) xo(a)’

where v(q)=2me?/q is the Fourier transform of the 2D

Xsd Q) (24)

We can now construct the 2DEG equations-of-state in théoulomb potential energy. From Edg), (2), (22), (23), and

two domains K Bep<w and 0<Bep<1. On substituting
the expressions from Eq$8), (10), and (12) into Eq. (14)
and integrating, one readily obtains for the first domain:

n ne?
P—Po=5(E)(nT=0)~ ;- [0.697,~0.173.Inr ]

+ 0.0095-0.1768 | L 2mne
a(ﬂ8|=)2[' ' NBer] ao(Ber)?

X[ —0.368-0.0328 InBeg+0.0265In Bep)?];
(18

2
1+

T
3(Ber)?

19

n8|:
Po=n(Ein)o(n,8)= >

The first two right-hand-side members of E@8) are iden-
tified as the exchange-correlation part of the pressuré at

=0J[4] The third and fourth right-hand-side members are

their respective low-temperature corrections. Repeating thi
procedure for the weakly degenerate domain and droppin
the O(yIn 7)? term in Eq.(13), one obtains

P—Po=2n(Ec)(n,T)+5n(E)(n,T), (20)
n
Po=n(Exin)o(n.B)= E[H i(Bep)] (0=Begp<1).
(21
The first right-hand-side member of EQQ) is given by Eq.

(13) and the second by E@l1).
The inverse compressibility formulas

(24), one obtains

KO
G(qHO):—<—T—1)
v(@)xo(d—0) | Kt
9/l >
— = +r2(0.0765-0.0153 Ir )
kF a
¢l (0.4032-0.19631Ber) —
(Begy (04032 01903 Per) = g, 132

X[1.489+0.3815In8gr+0.1179In ,88,:)2]]

(1< Bep<o), (25)
G(q—0)= g - %(m 2+ 0.6544
. —(o.eszwsF)%ﬂ(EX><n,T=0>]
g
(0<pPep<l); (26)

ke=\2n is the Fermi wave number and=2me?8n is the

2D Debye wave number. The first two right-hand-side mem-
bers of Eq.(25 comprise the zero-temperature exchange-
correlation contribution; the last two are the respective tem-
perature corrections. Equatiof26) exhibits the exchange
correction to the classical correlation energy. Observe that
the respective pure quantum and classical local field correc-
tions of Ref.[4] are indeed recovered in the zero-temperature
and classical limits.
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