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Compressibility sum rule for the two-dimensional electron gas
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The authors establish formulas for the isothermal compressibility and long-wavelength static density-density
response function of a weakly correlated two-dimensional electron gas in the 1!b«F,` and 0<b«F!1
degeneracy domains;b«F5pn\2/(mkBT). The calculation of the pressure in the former domain is based on
the Isihara-Toyoda formula@A. Isihara and T. Toyoda, Phys. Rev. B21, 3358 ~1980!# for the exchange-
correlation energy at finite temperature. The pressure calculation in the latter domain is based on the Totsuji
classical cluster-expansion formula for the correlation energy@H. Totsuji, J. Phys. Soc. Jpn.40, 857 ~1976!;
Phys. Rev. A19, 889 ~1979!#.
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Satisfaction of the compressibility sum rule is recogniz
as an important test of the reliability of model static a
dynamical theories of Coulomb systems in a strongly co
lated ~liquid! phase. The system of interest in this Brief R
port is the two-dimensional electron gas~2DEG!, an ideal-
ized model in which electronic motions in a uniform positi
background are restricted to a two-dimensional plane of z
thickness; the electrons interact via the 1/r Coulomb poten-
tial, r being the in-plane separation distance. Examples
two-dimensional laboratory systems that the 2DEG emula
are~i! electrons trapped on the free surface of liquid heliu
@1,2,3#, ~ii ! electron arrays on a thin helium film coating
dielectric substrate@3#, and ~iii ! 2D electron states at th
interface between GaAs and AlxGa12xAs. @2#

Compressibility sum rules for the static screened den
response functionxsc(q)[xsc(q,v50) have been formu-
lated for the correlated 2DEG in the zero-temperature qu
tum and classical domains@4#. They have yet to be formu
lated, however, for arbitrary values of the 2D degener
parameterb«F5pn\2/(mkBT) owing to the lack of infor-
mation about the internal energy. 2DEG internal energy c
culations at low temperatures in the neighborhood ofT50
are nevertheless available in the weak coupling regime@5#,
making it possible to formulate the compressibility rule f
1!b«F,`. This is one goal of this Brief Report. The oth
is to formulate the 2D-compressibility rule for the weak
degenerate domain 0<b«F!1 in the neighborhood of the
classical limit also in the weak coupling regime.

The compressibility sum rule states that at lo
wavelengths the exact screened density response fun
is determined by the isothermal compressibilityKT
5@n(]P/]n)T#21:

xsc~q→0!52n2KT , ~1!
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For noninteracting charges, evaluation of the compressib
results in the familiar 2D static Lindhard function at lon
wavelengths:

x0~q→0,v50!52n2KT
052

n

«F
~12e2b«F!. ~2!

For interacting charges, the calculation ofKT begins by
specifying the total average energy per particle,

^E&~n,T!5^Ekin&0~n,T!1^Ex&~n,T!1^Ec&~n,T!. ~3!

expressed in terms of the average kinetic energy per par
of a noninteracting system,

^Ekin&0~n,T!5
1

«F
E

0

`

d«
«

11exp@b~«2m0!#
, ~4!

and ^Ex&(n,T) and ^Ec&(n,T), the Hartree-Fock~HF! ex-
change and correlation energies per particle.

Addressing first thê Ekin&0 kinetic energy contribution,
the right-hand side of Eq.~4! can be cast in a more tractab
form by observing that̂Ekin&0 satisfies the initial value prob
lem

S ]

]n
1

1

nD ^Ekin&0~n,T!5
p\2

m

1

12exp~2b«F!
, ~5a!

^Ekin&0~n→0,T!→1

b
kBT, ~5b!

where the chemical potentialm0 has been eliminated in favo
of the 2D Fermi energy«F5pn\2/m via the 2DEG relation
for noninteracting particles@6~a!#
©2001 The American Physical Society03-1
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bm01 ln@11exp~2bm0!#5b«F . ~6!

The uniqueness of the solution to Eq.~5!,

^Ekin&0~n,T!5
1

«F
E

0

«F
dx

x

12exp~2bx!
, ~7!

guarantees that Eqs.~7! and ~4! are one and the same.
should be emphasized that this latter more tractable kin
energy formula holds only in two dimensions. In the doma
1!b«F,`, a denominator expansion of Eq.~7! in a geo-
metric series gives@7#:

^Ekin&0~n,T!>
1

«F
E

0

«F
dx x(

p50

`

exp~2pbx!

5
«F

2
1

1

«F
(
p51

` E
0

«F
dx xexp~2pbx!

5
«F

2
1

1

b2«F
(
p51

`
1

p2 5
«F

2 F11
p2

3~b«F!2G .
~8!

The expression~8! is in agreement with Eq.~8.3! of Ref. @5#,
derived by application of the Sommerfeld expansion@6~b!# to
the free-electron grand-partition function. In the weakly d
generate domain 0<b«F!1, the 2D expression

^Ekin&0~n,T!>
1

b F11
1

4
b«FG ~9!

results from expanding@12exp(2bx)# in Eq. ~7! in a Taylor
series aboutbx50 and retaining only the lowest-orde
O(b«F) degeneracy correction.

We next consider the 2D-exchange contribution. In
domain 1!b«F,`, the Isihara-Toyoda@5# formula for the
finite-temperature correction to the HF exchange energy@8#
^Ex&(n,T50)520.6(e2/a), can be written in the form

^Ex&~n,T!5^Ex&~n,T50!

1
2p

~b«F!2 F0.02282
1

12&
ln~b«F!G e2

a
,

~10!

wherea51/Apn is the 2D interparticle distance. In the op
posite domain 0<b«F!1, the 2D-exchange energy is re
sonably well approximated by the asymptotic formula@9#

^Ex&~n,T!'0.632Ab«F^Ex&~n,T50!. ~11!

For the 2D-correlation energy, the Ref.@5# calculation
provides
01210
ic

-

e

^Ec&~n,T!5@20.349610.865r s20.173r s ln r s#
e2

2a0

1
4p

~b«F!2 F20.182420.0297 lnb«F

1
1

24p
~ ln b«F!2G ~12!

for the domain 1!b«F,`; r s5a/a0!1 ~a0 is the Bohr
radius!. The first right-hand-side member of~12! is the cor-
relation energy at zero temperature; the second right-ha
side member is the finite-temperature correction. In
weakly degenerate quantum domain 0<b«F!1, while the
O(\2) quantum correctionD^Ec& to the classical correlation
energy was calculated some time ago for the 3D o
component plasma~OCP!,@10# it has yet to be determined fo
the 2D OCP. If this correction is sufficiently small, then th
classicalRef. @11# 2D cluster-expansion formula,

^Ec&~n,T!5
g

2b
@ ln~2g!10.1544#1O@~g ln g!2#,

~g52pnb2e4!1! ~13!

should reasonably well represent the correlation energy
the 0<b«F!1 domain. The error incurred by invoking th
classical formula~13! can be roughly estimated by conje
turing that the Ref.@10# D^Ec&u3D52A3D(«F)3DG3D quan-
tum correction to the 3D OCP correlation energy, expres
in terms of the classical coupling parameterG3D
5bZ2e2/a3D , has the same formD^Ec&u2D52A2D«FG2D

52A2D«FAg/2 in two dimensions; A3D5(1/2p)
3(16p/81)1/3 is a geometric constant; its 2D counterpa
A2D is also expected to be of order unity at most. Then
dering the smallness parameters so thatb«F→0 at the same
rate as or faster thang→0 ~to ensure the recovery of th
classical Debye correlation energy in the\→0 limit!, we see
that the leading quantum correction isO(b«F /Ag) times
smaller than theg-dependent contributions to Eq.~13!. Ob-
serve, however, that this correction isalways O(Ab«F)
times smaller than the exchange energy~11!, independently
of the ordering of the smallness parameters. Thus, the ra
nale for leaving out of Eq.~13! the negligibly small quantum
correction @and, consequently, the higher-order (g ln g)2

classical term#, while at the same time retaining the exchan
correction in the compressibility calculation below. Th
completes the specification of the total energy per part
^E& of the interacting system.

We now proceed to the calculation of the pressure fr
the well-known thermodynamic formula@12#

S ]

]b
bPD

n

5n2S ]

]n
^E& D

b

~14!
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52n^Ekin&01
n«F

12exp~2b«F!

1n2S ]

]n
@^Ex&1^Ec&# D

b

. ~15!

Here, it is instructive to isolate for the moment the contrib
tion from the free-particle kinetic energy; integrating the fi
two right-hand-side members of Eq.~15! over b gives

bP05n2nE
0

b

^Ekin&0~n,b8!db8

1n«FE
0

b db8

12exp~2b8«F!
. ~16!

Differentiating Eq.~16! and making use of the differentia
equation~5a! for the noninteracting 2D Coulomb gas, on
readily obtains

S ]P0

]n D
b

5
«F

12exp~2b«F!
, ~17!

consistent with the long-wavelength Lindhard expression~2!
for arbitrary degeneracy.

We can now construct the 2DEG equations-of-state in
two domains 1!b«F,` and 0<b«F!1. On substituting
the expressions from Eqs.~8!, ~10!, and ~12! into Eq. ~14!
and integrating, one readily obtains for the first domain:

P2P05
n

2
^Ex&~n,T50!2

ne2

4a0
@0.692r s20.173r s ln r s#

1
pne2

a~b«F!2 @0.009520.1768 lnb«F#1
2pne2

a0~b«F!2

3@20.36820.0328 lnbeF10.0265~ ln b«F!2#;

~18!

P05n^Ekin&0~n,b!5
n«F

2 F11
p2

3~b«F!2G ~1!b«F,`!.

~19!

The first two right-hand-side members of Eq.~18! are iden-
tified as the exchange-correlation part of the pressure aT
50.@4# The third and fourth right-hand-side members a
their respective low-temperature corrections. Repeating
procedure for the weakly degenerate domain and dropp
the O(g ln g)2 term in Eq.~13!, one obtains

P2P05 1
2 n^Ec&~n,T!1 2

3 n^Ex&~n,T!, ~20!

P0>n^Ekin&0~n,b!>
n

b
@11 1

4 ~b«F!# ~0<b«F!1!.

~21!

The first right-hand-side member of Eq.~20! is given by Eq.
~13! and the second by Eq.~11!.

The inverse compressibility formulas
01210
-
t

e

is
g

1

KT
5n«F1 3

4 n^Ex&~n,T50!2
ne2

8a0
~0.865r s20.173r s ln r s!

1
pne2

2a~b«F!2 ~20.36310.177 lnb«F!

1
2pne2

a0~b«F!2 @0.33510.086 lnb«F20.0265~ ln b«F!2#

~1!b«F,`!, ~22!

1

KT
5

n

b
~11 1

2 b«F!1
gn

2b
~ ln 2g10.654!

1~0.632Ab«F! 4
3 n^Ex&~n,T50! ~0<b«F!1!,

~23!

then follow from Eqs.~18!–~21!.
To facilitate comparison with mean field theories, we i

troduce the local field correctionG(q) via

xsc~q!5
x0~q!

11n~q!G~q!x0~q!
, ~24!

where n(q)52pe2/q is the Fourier transform of the 2D
Coulomb potential energy. From Eqs.~1!, ~2!, ~22!, ~23!, and
~24!, one obtains

G~q→0!5
1

n~q!x0~q→0!
S KT

0

KT
21D

5
q

kF
H 1

p
1r s

2~0.076520.0153 lnr s!

1
1

~b«F!2 ~0.403220.1963 lnb«F!2
r s

~b«F!2

3@1.48910.3815 lnb«F10.1179~ ln b«F!2#J
~1!b«F,`!, ~25!

G~q→0!5
q

k H 2
g

2
~ ln 2g10.6544!

2~0.632Ab«F! 4
3 b^Ex&~n,T50!J

~0<b«F!1!; ~26!

kF5A2pn is the Fermi wave number andk52pe2bn is the
2D Debye wave number. The first two right-hand-side me
bers of Eq.~25! comprise the zero-temperature exchang
correlation contribution; the last two are the respective te
perature corrections. Equation~26! exhibits the exchange
correction to the classical correlation energy. Observe
the respective pure quantum and classical local field cor
tions of Ref.@4# are indeed recovered in the zero-temperat
and classical limits.
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dy
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d

b (
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`
1

p
exp~2pb«Fd!

1
1

b 2«F
(
p51

`
1

p2 exp~2pb«Fd!.
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p51

pmax 1
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(
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